

 \gtrsim Before proceed to Experiment 2, let's all think about how to make a strong magnet. < Example > Increase the number of batteries. Increase the number of coil windings. [®] Strength of electromagnets 2 Examine by changing the magnitude of the current E Find out how many suspended paper clips Find out how many suspended paper clips you have using 1 battery. you have using 2 batteries connected in series. U 0 Ð \oplus \oplus

☆ When using a galvanometer in Experiment 2-C, try drawing the schematic symbols in the figure above.

Changeable conditions	The magnitude of the current	1 battery
	When measured with a galvanometer	Enter the actual current value measured
Unchangeable condition	Number of coil windings	1
Experiment 2-C results (number of paper clips)	1st time	Enter the actual number of pi that you can hang
	2nd time	Enter the actual number of pi that you can hang
	3rd time	Enter the actual number of pi that you can hang

2 batteries Enter the actual current value measured ampere ampere 00 windings Enter the actual number of pieces ieces that you can hang Enter the actual number of pieces ieces that you can hang Enter the actual number of pieces that you can hang ieces

Α

בודי 220215R.E

 \precsim When using a galvanometer in Experiment 2-D, try drawing the schematic symbols in the figure above.

Unchangeable	The magnitude of the current	2 batteries	
condition	When measured with a galvanometer	Enter the actual current value measured amper	
Changeable conditions	Number of coil windings	200 windings	100 windings
Experiment 2-D results (number of paper clips)	1st time	Enter the actual number of pieces that you can hang	Enter the actual number of pieces that you can hang
	2nd time	Enter the actual number of pieces that you can hang	Enter the actual number of pieces that you can hang
	3rd time	Enter the actual number of pieces that you can hang	Enter the actual number of pieces that you can hang

$symp From$ the results of Experiment 2, let's summer γ	narize the strengt
< Example > The greater the current flowing or the greater t	he number of coils,
	公
E Let's turn the coil mo	tor!
∠Let's write down your thoughts when	Robo!
< Example > I could kick the ball whenever I wanted,	
making it fun to play with. Even in narrow	
spaces, I could dodge objects and move	
around.It was interesting to see the	C
headboard moving in a bobbing motion	
at the same time as the kick.	
☆ Let's think about what kind of machines ar	nd tools that use th

Electromagnetic cranes, Linear motor cars, Electric fans, clocks, etc.

th of the electromagnet.

he function of electromagnets.

220215R.E נלוב