

Magnet [Type SB] Worksheet

Let's find out what can be attracted and cannot be attracted by a magnet.

What is attracted to magnets? •Find out what can be

attracted by magnets.

☆Circle the items that are attracted to magnets and draw a cross for items that are not attracted to magnets.

Attracted by magnets	Prediction	Result
nails		0
paper clips		0
pipe cleaners		0
iron		0
iron bars		0
sponges		X

Attracted by magnets	Prediction	Result
bulldog clips		0
eraser		X
scissors (blade part)		0
scissors (handheld part)		0
empty cans (aluminium)		X
empty cans (steel cans)		0

Strength of magnet

•Find out if the magnet can attract iron, even if there is non-magnetic material in-between.

Thread

Collect iron sand

Let's put the magnet in the sandbox.

Play with pipe cleaners

Place a bar magnet under the container and let the pipe cleaners stand on it.

☆What happened to the nail?

The nail moved in accordance with the movement of the magnet.

☆What happened to the paper clip?

release the magnet

The paper clip was attracted to the magnet, even when separated from the magnet.

What are the properties of the magnet?

Poles of the magnet

☆ Tick in the box the point where the nail is most attracted to.

Z

G

☆Write down in the brackets what happened to the magnet.

Various experiments with magnetic poles

Place a bar magnet on the lid of the case and bring another bar magnet close to it.

If you do not know where are the magnetic poles

• Put the bar magnets close to each other to find out where the poles are.

Frely suspended magnet

Find out what happens to a magnet that is allowed to move freely,

*Make sure that no other magnets are nearby during

☆ What happened to the N and S poles when you use thread, pencil and water respectively?

<Example>

The magnet stopped in the same

direction, for the 3 situations.

Compare with the compass needle to see if there are any differences in movement.

☆Were there any difference from the compass?

<Example>

There was no difference between the compass and the movement of the magnet.

2 Magnets

• Find out which point • • • of the bar magnet is the nail attracted to the most.

Placed on a pencil

 $\stackrel{\wedge}{\sim}$ Tick in the box the point where the nail is most attracted to.

• Find out what happens to the poles when a rubber bar magnet is cut in half.

*Check the pole and paste the N/S stickers over them.

☆ Write N or S in the brackets.

closer to close

<Example>

There was no difference between the magnet and the iron sand, and the iron sand was attracted to the magnetic needle in the same way.

Can iron become a magnet?

Iron attached to a magnet

Do not remove iron sand from the bag!

Find out what happens when a nail attached to a magnet is slowly pulled apart, as shown in the diagram.

Remove the nail from the magnet and hold it close to the iron sand or compass needle.

 $\stackrel{\wedge}{
m T}$ What happened to the iron sand?

<Example>

The iron sand near the nail was attracted.

☆ What happened to the compass?

<Example>

The tip of the compass needle was attracted to the nail.

 \updownarrow What happened to the nail?

<Example>

The nail remained attached.

☆ Think and summarize what happens when iron is attached to a magnet.

<Example>

Iron attached to the magnet had the same properties as a magnet, so the iron became a magnet.

Create a magnet

 As shown in the diagram, rub an iron bar with a magnet and bring it close to iron sand or a compass needle.

• Put the iron rod in the sponge and have it float on the water (similar to Experiment 4).

☆ What happened to the iron sand and the compass needle?

☆ What happened to the iron rod that floated in the water?

<Example>

Both the iron sand and the tip of the compass were attracted to the iron rod.

<Example>

The iron rod stopped in the same direction as the compass needle.

Let's try creating a toy using magnets.

☆ Make a toy and write down your experiences of playing with it.

Write down your own experiences.