

Magnet [Type SB] Worksheet

Let's find out what can be attracted and cannot be attracted by a magnet.

What is attracted to magnets? •Find out what can be

attracted by magnets.

☆Circle the items that are attracted to magnets and draw a cross for items that are not attracted to magnets.

Attracted by magnets	Prediction	Result	Attracted by magnets	Prediction	Result

Strength of magnet

•Find out if the magnet can attract iron, even if there is non-magnetic material in-between.

iron even when you move magnet away from the iron.

•Find out if the magnet can attract the

Collect iron sand

Let's put the magnet

Place a bar magnet under the container and let the pipe cleaners stand on it.

☆What happened to the nail?

container.

☆What happened to the paper clip?

What are the properties of the magnet?

Poles of the magnet

● Move the two bar magnets close to each other and check the response at points ● 🖨 🕒 🕒

• Find out which point **A B O** of the bar magnet is the nail attracted to the most

☆ Tick in the box the point where the nail is most attracted to.

☆Write down in the brackets what happened to the magnet.

Various experiments with magnetic poles

Place a bar magnet on the lid of the case and bring another bar magnet close to it.

Place the pencil at the bottom of the case and pass a round magnet through it.

If you do not know where are the magnetic poles

•Put the bar magnets close to each other to

Frely suspended magnet

• Find out what happens to a magnet that is allowed to move freely,

*Make sure that no other magnets are nearby during

☆ What happened to the N and S poles when you use thread, pencil and water respectively?

●Compare with the compass needle to see if there are any differences in movement.

☆Were there any difference from the compass?

2 Magnets

• Find out which point • • • of the bar magnet is the nail attracted to the most.

Placed on a pencil

 $\stackrel{\wedge}{\sim}$ Tick in the box the point where the nail is most attracted to.

• Find out what happens to the poles when a rubber bar magnet is cut in half.

*Check the pole and paste the N/S stickers over them.

☆ Write N or S in the brackets.

