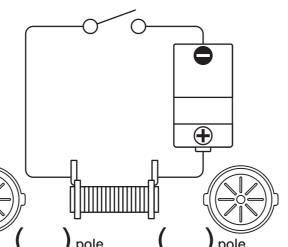

Name		

Properties of Electromagnets

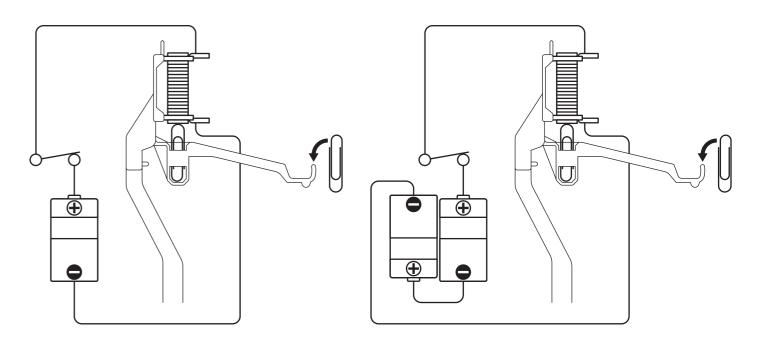
Find out how to attract iron Apply or stop an electric current to the electromagnet (yellow), and bring it closer to the paper clip. Switch ☆ What happened to the paper clip? Apply current and bring it closer Electromagnet (Yellow) (approximate 100 turns) Stop current and bring it closer


Find out if there is a magnetic pole

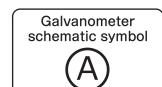
- **B** Apply an electric current to the electromagnet (yellow), and bring the compass closer to it.
- Switch the direction of the batteries and redo the previous step.
- ☆Write down the direction of the compass's needle and write N or S in brackets (). in the figure on the right.
- ☆ Let's summarize the relationship between the direction of

★ Let's compare the magnet and electromagnet.

A Lot 3 compare the magnet and electron
Similarities
Differences

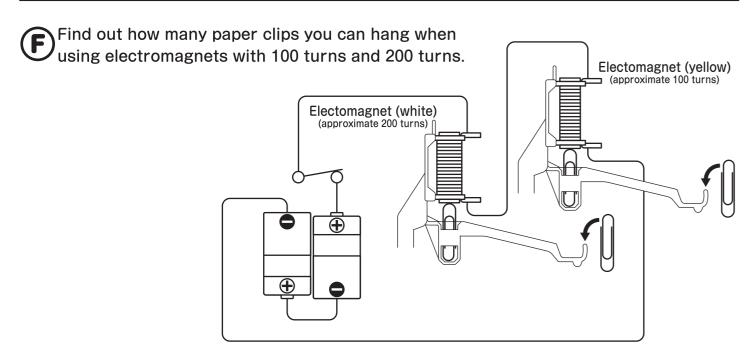

☆Before proceeding to Experiment 2, let's think about how to make a strong electromagnet.

Electromagnetic strength

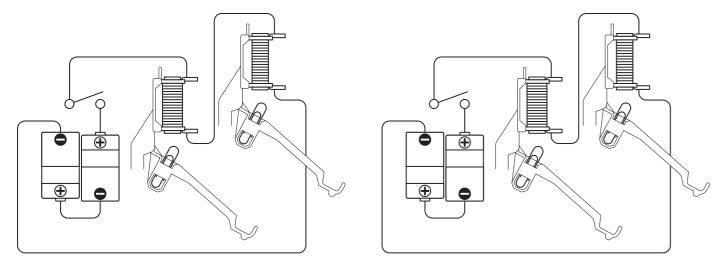

Change magnitude of the current

Find out how many paper clips you can hang when using one battery.

Find out how many paper clips you can hang when using two batteries connected in series.


☆ When using a galvanometer in Experiment 2-C, try drawing the schematic symbols in the figure above.

Variable conditions	The magnitude of the current	1 battery	2 batteries
	When measured with a galvanometer	ampere	ampere
Constant condition	Number of coil windings	100 turns	
Experiment 2-C results (number of paper clips)	1st time		
	2nd time		
	3rd time		



Change number of turns on the coil

Variable condition	The magnitude of the current	2 batteries	
	When measured with a galvanometer		ampere
Constant conditions	Number of coil turns	200 turns	100 turns
Experiment 2-D results (number of paper clips)	1st time		
	2nd time		
	3rd time		

 \rightleftarrows When using a galvanometer in Experiment 2-D, try drawing the schematic symbols in the figure above.

☆Based on the results of Experiment about electromagnetic strength.	nt 2, let's summarise what you have found out
Let's try Let's turn the co	Write down the areas to pay attention to ensure that the coil motor operates well.
Let's try Let's make a So	occer Robo!
☆Let's write down your thoughts when moving Soccer Robo.	
WHEN HOVING GOODER FIOLE.	
☆Let's think about the types of mac	hines and tools that make use of electromagnets.